Skip to contents

Full pipeline: data cleaning, missingness injection, imputation, and evaluation.

Usage

evaluator(data = NULL)

Arguments

data

is either a data.frame that has already been loaded in R. or is the filename to a data file (CSV, TSV, TXT, XLSX, XLS, RDS)

Value

A list of evaluator objects (one per imputation method).

See also

vignette("imputetoolkit") For a complete tutorial, see the package vignette: vignette("imputetoolkit")

Examples

# Example 1: Using a file shipped with the package
file <- system.file("extdata", "sample_dataset.csv", package = "imputetoolkit")
if (FALSE) { # \dontrun{
res <- evaluator(filename = file)
print(res$mean_mode)
summary(res$median_mode)
} # }

# Example 2: Passing a pre-loaded data.frame
df <- utils::read.csv(system.file("extdata", "sample_dataset.csv",
                                  package = "imputetoolkit"),
                      stringsAsFactors = TRUE)
if (FALSE) { # \dontrun{
res <- evaluator(data = df)
print(res$mean_mode)
} # }